E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
DUAL TRIGGER OF TRANSVERSE OSCILLATIONS IN A PROMINENCE BY EUV FAST AND SLOW CORONAL WAVES: SDO/AIA AND STEREO/EUVI OBSERVATIONS View all abstracts by submitter

Sanjay Gusain   Submitted: 2012-10-24 14:58

We analyze flare-associated transverse oscillations in a quiescent solar prominence on 8-9 September, 2010. Both the flaring active region and the prominence were located near the West limb, with a favorable configuration and viewing angle. The fulldisk extreme ultraviolet (EUV) images of the Sun obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory, show flare-associated lateral oscillations of the prominence sheet. The STEREO-A spacecraft, 81.5◦ ahead of the Sun-Earth line, provides on-disk view of the flare-associated coronal disturbances. We derive the temporal profile of the lateral displacement of the prominence sheet by using the image cross-correlation technique. The displacement curve was de-trended and the residual oscillatory pattern was derived. We fit these oscillations with a damped cosine function with a variable period and find that the period is increasing. The initial oscillation period (P0 ) is ∼28.2 minutes and the damping time (τD ) ∼ 44 minutes. We confirm the presence of fast and slow EUV wave components. Using STEREO-A observations we derive a propagation speed of ∼250 km s-1 for the slow EUV wave by applying time-slice technique to the running difference images. We propose that the prominence oscillations are excited by the fast EUV wave while the increase in oscillation period of the prominence is an apparent effect, related to a phase change due to the slow EUV wave acting as a secondary trigger. We discuss implications of the dual trigger effect for coronal prominence seismology and scaling law studies of damping mechanisms.

Authors: Sanjay Gosain and Claire Foullon
Projects: National Solar Observatory (Sac Peak),SDO-AIA,STEREO

Publication Status: Accepted in ApJ
Last Modified: 2012-10-26 14:55
Go to main E-Print page  A MULTI-SPACECRAFT VIEW OF A GIANT FILAMENT ERUPTION DURING 26/27 SEPTEMBER 2009  Modeling Magnetic Field Structure of a Solar Active Region Corona using Nonlinear Force-Free Fields in Spherical Geometry  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University