E-Print Archive

There are 4352 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Parametric survey of longitudinal prominence oscillation simulations View all abstracts by submitter

Qingmin Zhang   Submitted: 2013-04-16 02:58

{Longitudinal filament oscillations recently attracted more and more attention, while the restoring force and the damping mechanisms are still elusive.} {In this paper, we intend to investigate the underlying physics for coherent longitudinal oscillations of the entire filament body, including their triggering mechanism, dominant restoring force, and damping mechanisms.} {With the MPI-AMRVAC code, we carry out radiative hydrodynamic numerical simulations of the longitudinal prominence oscillations. Two types of perturbations, i.e., impulsive heating at one leg of the loop and an impulsive momentum deposition are introduced to the prominence, which then starts to oscillate. We study the resulting oscillations for a large parameter scan, including the chromospheric heating duration, initial velocity of the prominence, and field line geometry.} {It is found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. An extensive parameter survey results in a scaling law, showing that the period of the oscillation, which weakly depends on the length and height of the prominence, and the amplitude of the perturbations, scales with sqrt{R/g_odot}, where R represents the curvature radius of the dip, and g_odot is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes non-negligible for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Compared to heat conduction, the radiative cooling is the dominant factor leading to the damping. A scaling law for the damping timescale is derived, i.e., ausim l1.63 D0.66w-1.21v0-0.30, showing strong dependence on the prominence length l, the geometry of the magnetic dip (characterized by the depth D and the width w), and the velocity perturbation amplitude v0. The larger the amplitude, the faster the oscillation damps. It is also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.}

Authors: Q. M. Zhang, P .F. Chen, C. Xia, R. Keppens, H. S. Ji
Projects: None

Publication Status: A&A in press
Last Modified: 2013-04-17 12:23
Go to main E-Print page  High-Cadence and High-Resolution Halpha Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS  Coronal loop physical parameters from the analysis of multiple observed transverse oscillations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University