E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Superflares on Solar-Type Stars Observed with Kepler II. Photometric Variability of Superflare-Generating Stars : A Signature of Stellar Rotation and Starspots View all abstracts by submitter

Yuta Notsu   Submitted: 2013-05-03 02:04

We performed simple spot-model calculations for quasi-periodic brightness variations of solar-type stars showing superflares, by using Kepler photometric data. Most of superflare stars show quasi-periodic brightness modulations with the typical period of one to a few tens of days. Our results indicate that these brightness variations of superflare stars can be explained by the rotation of the star with fairly large starspots. Using the result of the period analysis, we investigated the relation between the energy and frequency of superflares and the rotation period. Stars with relatively slower rotation rates can still produce flares that are as energetic as those of more rapidly rotating stars, although the average flare frequency is lower for more slowly rotating stars. We found that the energy of superflares are related to the total coverage of starspots. The correlation between the spot coverage and the flare energy in superflares is similar to that in solar flares. These results suggest that the energy of superflares can be explained by the magnetic energy stored around starspots.

Authors: Yuta Notsu, Takuya Shibayama, Hiroyuki Maehara, Shota Notsu, Takashi Nagao, Satoshi Honda, Takako T. Ishii, Daisaku Nogami, Kazunari Shibata
Projects:

Publication Status: Published. (2013, ApJ, 771, 127)
Last Modified: 2013-06-28 10:16
Go to main E-Print page  Pathways of   large-scale magnetic couplings between coronal events  A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. I. Unusual History of an Eruptive Filament  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University