E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Quiescent Reconnection Rate Between Emerging Active Regions and Preexisting Field, with Associated Heating: NOAA AR 11112, View all abstracts by submitter

Lucas Tarr   Submitted: 2013-12-12 08:47

When magnetic flux emerges from beneath the photosphere it displaces the preexisting field in the corona, and a current sheet generally forms at the boundary between the old and new magnetic domains. Reconnection in the current sheet relaxes this highly stressed configuration to a lower energy state. This scenario is most familiar, and most often studied, in flares, where the flux transfer is rapid. We present here a study of steady, quiescent flux transfer occurring at a rate three orders of magnitude below that in a large flare. In particular we quantify the reconnection rate, and related energy release, occurring as new polarity emerges to form NOAA Active Region 11112 ( extsf{SOL16 October 2010T00:00:00L205C117}) within a region of preexisting flux. A bright, low lying kernel of coronal loops above the emerging polarity, observed with the emph{Atmospheric Imaging Assembly} onboard the emph{Solar Dynamics Observatory} and the emph{X-ray Telescope} onboard emph{Hinode}, originally shows magnetic connectivity only between regions of newly emerged flux when overlaid on magnetograms from the emph{Helioseisimic and Magnetic Imager}. Over the course of several days, this bright kernel advances into the preexisting flux. The advancement of an easily visible boundary into the old flux regions allows measurement of the rate of reconnection between old and new magnetic domains. We compare the reconnection rate to the inferred heating of the coronal plasma. To our knowledge, this is the first measurement of steady, quiescent heating related to reconnection. We determine that the newly emerged flux reconnects at a fairly steady rate of 0.38 imes 1016unit{Mx s-1} over two days, while the radiated power varies between (2sim8) imes 1025unit{erg s-1} over the same time. We find that as much as 40% of the total emerged flux at any given time may have reconnected. The total amount of transferred flux (sim1 imes1021unit{Mx}) and radiated energy (sim7.2 imes1030unit{ergs}) are comparable to that of a large M- or small X-class flare, but are stretched out over 45 hours.

Authors: Tarr, L.A., Longcope, D.W., McKenzie, D.E., and Yoshimura, K.
Projects: Hinode/XRT,SDO-AIA,SDO-HMI

Publication Status: Accepted for publication in Solar Physics
Last Modified: 2013-12-12 11:37
Go to main E-Print page  Forward-Modeling of Doppler Shifts in EUV Spectral Lines  Turbulent pitch-angle scattering and diffusive transport of hard-X-ray producing electrons in flaring coronal loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University