E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Variation of the solar magnetic flux spectrum during solar cycle 23 View all abstracts by submitter

Chunlan Jin   Submitted: 2013-12-19 23:04

By using the unique database of SOHO/MDI full disk magnetograms from 1996 September to 2011 January, covering the entire solar cycle 23, we analyze the time-variability of the solar magnetic flux spectrum and study the properties of extended minimum of cycle 23. We totally identify 11.5 million magnetic structures. It has been revealed that magnetic features with different magnetic fluxes exhibit different cycle behaviors. The magnetic features with flux larger than 4.0 imes 1019 Mx, which cover solar active regions and strong network features, show exactly the same variation as sunspots; However, the remaining 82% magnetic features which cover the majority of network elements show anti-phase variation with sunspots. We select a criterion that the monthly sunspot number is less than 20 to represent the Sun's low activity status. Then we find the extended minimum of cycle 23 is characterized by the long duration of low activity status, but the magnitude of magnetic flux in this period is not lower than previous cycle. Both the duration of low activity status and the minimum activity level defined by minimum sunspot number show a century period approximately. The extended minimum of cycle 23 shows similarities with solar cycle 11, which preceded the mini-maxima in later solar cycles. This similarity is suggestive that the solar cycles following cycle 23 are likely to have low activity.

Authors: Chunlan Jin & Jingxiu Wang
Projects: None

Publication Status: accepted by JGR
Last Modified: 2013-12-20 14:56
Go to main E-Print page  Solar Magnetized Tornadoes: Rotational Motion in a Tornado-like Prominence  The behavior of transverse waves in nonuniform solar flux tubes. II. Implications for coronal loop seismology  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University