E-Print Archive

There are 4375 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Investigating the Dynamics and Density Evolution of Returning Plasma Blobs from the 2011 June 7 Eruption View all abstracts by submitter

Jack Carlyle   Submitted: 2014-01-22 23:53

This work examines infalling matter following an enormous Coronal Mass Ejection (CME) on 2011 June 7. The material formed discrete concentrations, or blobs, in the corona and fell back to the surface, appearing as dark clouds against the bright corona. In this work we examined the density and dynamic evolution of these blobs in order to formally assess the intriguing morphology displayed throughout their descent. The blobs were studied in five wavelengths (94, 131, 171, 193 and 211 Angstrom) using the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA), comparing background emission to attenuated emission as a function of wavelength to calculate column densities across the descent of four separate blobs. We found the material to have a column density of hydrogen of approximately 2 x 1019 cm-2, which is comparable with typical pre-eruption filament column densities. Repeated splitting of the returning material is seen in a manner consistent with the Rayleigh-Taylor instability. Furthermore, the observed distribution of density and its evolution are also a signature of this instability. By approximating the three-dimensional geometry (with data from STEREO-A), volumetric densities were found to be approximately 2 x 10-14 g cm-3, and this, along with observed dominant length-scales of the instability, was used to infer a magnetic field of the order 1 G associated with the descending blobs.

Authors: Jack Carlyle, David R. Williams, Lidia van Driel-Gesztelyi, Davina Innes, Andrew Hillier, Sarah Matthews
Projects: SDO-AIA

Publication Status: In press, ApJ
Last Modified: 2014-01-23 10:23
Go to main E-Print page  Test of the Hemisphere Rule of Magnetic Twist in Solar Active Regions Using the Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Data  Physical Properties of White-Light Sources in the 2011 Feb 15 Solar Flare  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
One dimensional prominence threads: I. Equilibrium models
Time-dependent properties of sunspot groups - I. Lifetime and asymmetric evolution
Investigating Remote-sensing Techniques to Reveal Stealth Coronal Mass Ejections
ALMA observations of the variability of the quiet Sun at millimeter wavelengths
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University