E-Print Archive

There are 4353 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Statistical Analysis of Current Helicity and Twist in Solar Active Regions over the Phases of the Solar Cycle Using the Spectro-Polarimeter Data of Hinode View all abstracts by submitter

Kenichi Otsuji   Submitted: 2014-10-29 19:10

Current helicity and twist of solar magnetic fields are important quantities to characterize the dynamo mechanism working in the convection zone of the Sun. We have carried out a statistical study on the current helicity of solar active regions observed with the Spectro-Polarimeter (SP) of Hinode Solar Optical Telescope (SOT). We used SOT-SP data of 558 vector magnetograms of a total of 80 active regions obtained from 2006 to 2012. We have applied spatial smoothing and division of data points into weak and strong field ranges to compare the contributions from different scales and field strengths. We found that the current helicity follows the so-called hemispheric sign rule when the weak magnetic fields (absolute field strength < 300 gauss) are considered and no smoothing is applied. On the other hand, the pattern of current helicity fluctuates and violates the hemispheric sign rule when stronger magnetic fields are considered and the smoothing of 2.0 arcsec (mimicking ground-based observations) is applied. Furthermore, we found a tendency that the weak and inclined fields better conform to and the strong and vertical fields tend to violate the hemispheric sign rule. These different properties of helicity through the strong and weak magnetic field components give important clues to understanding the solar dynamo as well as the mechanism of formation and evolution of solar active regions.

Authors: Kenichi Otsuji, Takashi Sakurai and Kirill Kuzanyan
Projects: Hinode/SOT

Publication Status: accepted
Last Modified: 2014-10-30 09:49
Go to main E-Print page  Can we explain non-typical solar flares?  Global Energetics of Solar Flares: I. Magnetic Energies   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University