E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Explosive events on subarcsecond scale in IRIS observations: a case study View all abstracts by submitter

Zhenghua Huang   Submitted: 2014-11-17 20:22

We present study of a typical explosive event (EE) at subarcsecond scale witnessed by strong non-Gaussian profiles with blue- and red-shifted emission of up to 150 km s-1 seen in the transition-region Si iv 1402.8 Å, and the chromospheric Mg ii k 2796.4 Å and C ii 1334.5 Å observed by the Interface Region Imaging Spectrograph (IRIS) at unprecedented spatial and spectral resolution. For the first time an EE is found to be associated with very small-scale (∼120 km wide) plasma ejection followed by retraction in the chromosphere. These small-scale jets originate from a compact bright-point-like structure of ∼1.5'' size as seen in the IRIS 1330 Å images. SDO/AIA and SDO/HMI co-observations show that the EE lies in the footpoint of a complex loop-like brightening system. The EE is detected in the higher temperature channels of AIA 171 Å, 193 Å̊, and 131 Å suggesting that it reaches a higher temperature of log T = 5.36 ? 0.06 (K). Brightenings observed in the AIA channels with durations 90?120 s are probably caused by the plasma ejections seen in the chromosphere. The wings of the C ii line behave in a similar manner to the Si iv's, indicating close formation temperatures, while the Mg ii k wings show additional Doppler-shifted emission. Magnetic convergence or emergence followed by cancellation at a rate of 5 ?1014 Mx/s is associated with the EE region. The combined changes of the locations and the flux of different magnetic patches suggest that magnetic reconnection must have taken place. Our results challenge several theories put forward in the past to explain non-Gaussian line profiles, i.e., EEs. Our case study on its own, however, cannot reject these theories, thus further in-depth studies on the phenomena producing EEs are required.

Authors: Zhenghua Huang, Maria S. Madjarska, Lidong Xia, J. G. Doyle, Klaus Galsgaard, Hui Fu

Publication Status: ApJ in press
Last Modified: 2014-11-19 09:21
Go to main E-Print page  Statistical Evidence for Contributions of Flares and Coronal Mass Ejections to Major Solar Energetic Particle Events  Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-Learning Algorithm  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University