E-Print Archive

There are 4375 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection from 23 July 2012 View all abstracts by submitter

Manuela Temmer   Submitted: 2014-11-25 00:14

The fast coronal mass ejection (CME) from 23 July 2012 raised attention due to its extremely short transit time from Sun to 1 AU of less than 21 h. In-situ data from STEREO-A revealed the arrival of a fast forward shock with a speed of more than 2200 km s-1 followed by a magnetic structure moving with almost 1900 km s-1. We investigate the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in-situ data. We carefully measure the 3D kinematics of the CME using the graduated cylindrical shell model, and obtain a maximum speed of 2580?280 km s-1 for the CME shock and of 2270?420 km s-1 for its magnetic structure. Based on the 3D kinematics, the drag-based model (DBM) reproduces the observational data reasonably well. To successfully simulate the CME shock, we find that the ambient flow speed should be of average value close to the slow solar wind speed (450 km s-1), and the initial shock speed at a distance of 30 Rs should not exceed ≈2300 km s-1, otherwise it would arrive much too early at STEREO-A. The model results indicate that an extremely low aerodynamic drag force is exerted on the shock, smaller by one order of magnitude compared to the average. As a consequence, the CME hardly decelerates in interplanetary space and maintains its high initial speed. The low aerodynamic drag can only be reproduced when reducing the density of the ambient solar wind flow, in which the massive CME propagates, to rho_sw=1-2 cm-3 at the distance of 1 AU. This result is consistent with the preconditioning of interplanetary space owing to a previous CME.

Authors: Manuela Temmer and Nariaki Nitta

Publication Status: in press for Solar Physics
Last Modified: 2014-11-25 08:18
Go to main E-Print page  A model for straight and helical solar jets: I. Parametric studies of the magnetic field geometry  Overdamped Alfven waves due to ion-neutral collisions in the solar chromosphere  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
One dimensional prominence threads: I. Equilibrium models
Time-dependent properties of sunspot groups - I. Lifetime and asymmetric evolution
Investigating Remote-sensing Techniques to Reveal Stealth Coronal Mass Ejections
ALMA observations of the variability of the quiet Sun at millimeter wavelengths
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University