E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
High Dispersion Spectroscopy of Solar-type Superflare Stars. II. Stellar Rotation, Starspots, and Chromospheric Activities View all abstracts by submitter

Yuta Notsu   Submitted: 2014-12-29 19:06

We conducted high dispersion spectroscopic observations of 50 superflare stars with Subaru/HDS. These 50 stars were selected from the solar-type superflare stars that we had discovered from the Kepler data. More than half (34 stars) of these 50 target superflare stars show no evidence of binarity, and we estimated stellar parameters of these 34 stars in our previous study (\cite{PaperI}, hereafter called Paper I). According to our previous studies using Kepler data, superflare stars show quasi-periodic brightness variations whose amplitude (0.1-10%) is much larger than that of the solar brightness variations (0.01-0.1%) caused by the existence of sunspots on the rotating solar surface. In this study, we investigated whether these quasi-periodic brightness variations of superflare stars are explained by the rotation of a star with fairly large starspots, by using stellar parameters derived in Paper I. First, we confirmed that the value of the projected rotational velocity v \sin i is consistent with the rotational velocity estimated from the period of the brightness variation. Next, we measured the intensity of Ca II infrared triplet lines and Hα line, good indicators of the stellar chromospheric activity, and compared them with other stellar properties. The intensity of Ca II infrared triplet lines indicates that the mean magnetic field strength (\langle fB\rangle) of the target superflare stars can be higher than that of the Sun. A correlation between the amplitude of the brightness variation and the intensity of Ca II triplet line was found. All the targets expected to have large starspots because of their large amplitude of the brightness variation show high chromospheric activities compared to the Sun. These results support that the brightness variation of superflare stars is due to the rotation with large starspots.

Authors: Yuta Notsu, Satoshi Honda, Hiroyuki Maehara, Shota Notsu, Takuya Shibayama, Daisaku Nogami, Kazunari Shibata
Projects: Other

Publication Status: accepted for publication in PASJ
Last Modified: 2014-12-31 13:43
Go to main E-Print page  The structure of solar radio noise storms  High Dispersion Spectroscopy of Solar-type Superflare Stars. I. Temperature, Surface Gravity, Metallicity, and $v \sin i$  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University