E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Spatially resolved microwave oscillations above a sunspot View all abstracts by submitter

Alexander Nindos   Submitted: 2002-06-28 00:29

Using high quality VLA observations, we detected for the first time spatially resolved oscillations in the microwave total intensity (I) and circular polarization (V) emission of a sunspot-associated gyroresonance (g-r) source. Oscillations were detected at 8.5 and 5 GHz during several time intervals of our 10-hour-long dataset. The oscillations are intermittent: they start suddenly and are damped somehow more gradually. Despite their transient nature when they are observed they show significant positional, amplitude and phase stability. The spatial distribution of intensity variations is patchy and the location of the patches of strong oscillatory power is not the same at both frequencies. The strongest oscillations are associated with a small region where the 8.5 GHz emission comes from the second harmonic of the gyrofrequency while distinct peaks of weaker oscillatory power appear close to the outer boundaries of the 8.5 and 5 GHz g-r sources, where the emissions come from the third harmonic of the gyrofrequency. Overall, the 5 GHz oscillations are weaker than the 8.5 GHz oscillations (the rms amplitudes of the I oscillations are 1.3-2.5 imes 104 K and 0.2-1.5 imes 105 K, respectively). At both frequencies the oscillations have periods in the three-minute range: the power spectra show two prominent peaks at 6.25-6.45 mHz and 4.49-5.47 mHz. Our models show that the microwave oscillations are caused by variations of the location of the third and/or second harmonic surfaces with respect to the base of the chromosphere-corona transition region (TR), i.e. either the magnetic field strength or/and the height of the base of the TR oscillates. The best-fit model to the observed microwave oscillations can be derived from photospheric magnetic field strength oscillations with an rms amplitude of 40 G or oscillations of the height of the base of the TR with an rms amplitude of 25 km. Furthermore small variations of the orientation of the magnetic field vector yield radio oscillations consistent with the observed oscillations.

Authors: A. Nindos, C.E. Alissandrakis, G.B. Gelfreikh, V.M. Bogod, C. Gontikakis
Projects:

Publication Status: A&A, 386, 658
Last Modified: 2002-06-28 00:29
Go to main E-Print page  Photospheric Motions and Coronal Mass Ejection Productivity  A magnetic reconnection scenario of the Bastille-Day 2000 flare  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University