E-Print Archive

There are 4396 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Acceleration and Enrichment of 3He in Impulsive Solar Flares by Electron Firehose Waves View all abstracts by submitter

Gunnar Paesold   Submitted: 2002-09-08 10:55

A new mechanism for acceleration and enrichment of 3He during impulsive solar flares is presented. Low-frequency electromagnetic plasma waves excited by the Electron Firehose Instability (EFI) can account for the acceleration of ions up to 1 MeV/amu energies as a single stage process. The EFI arises as a direct consequence of the free energy stored in a temperature anisotropy (T_parallel>T_perp) of the bulk energized electron population during the acceleration process. In contrast to other mechanisms which require special plasma properties, the EFI is an intrinsic feature of the acceleration process of the bulk electrons. Being present as a side effect in the flaring plasma, these waves can account for the acceleration of 3He and 4He while selectively enhancing 3He due to the spectral energy density built up from linear growth. Linearized kinetic theory, analytic models and test-particle simulations have been applied to investigate the ability of the waves to accelerate and fractionate. As waves grow in both directions parallel to the magnetic field, they can trap resonant ions and efficiently accelerate them to the highest energies. Plausible models have been found that can explain the observed energies, spectra and abundances of 3He and 4He.

Authors: G. Paesold, R. Kallenbach and A.O. Benz

Publication Status: Astrophysical Journal, in Press
Last Modified: 2002-09-08 10:55
Go to main E-Print page  Hard X-ray and metric/decimetric radio observations of the 20 February 2002 solar flare  Hot Coronal Loop Oscillations Observed by SUMER: Slow Magnetosonic Wave Damping by Thermal Conduction  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 1723
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University