E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Coronal ''Wave'': a signature of the mechanism making CMEs large-scale in the low corona? View all abstracts by submitter

Gemma Attrill   Submitted: 2007-04-27 10:22

We analyse one of the first coronal waves observed by STEREO/EUVI associated with a source region just behind the limb, NOAA 10940. We apply the coronal "wave" model proposed by Attrill et al. (2007) to explain the evolution of the observed bright fronts, thereby arguing that the bright fronts and dimmings are due to magnetic reconnections between the expanding CME core and surrounding magnetic structures. We offer a discussion showing that this model provides a mechanism via which CMEs, expanding from a small source region can naturally become large-scale in the low corona.

Authors: G.D.R. Attrill, L.K. Harra, L. van Driel-Gesztelyi, P. Demoulin & J.P. Wulser
Projects: SoHO-EIT,STEREO

Publication Status: Astronomische Nachrichten (in press)
Last Modified: 2007-04-27 10:26
Go to main E-Print page  Evidence for interchange reconnection between a coronal hole and an adjacent emerging flux region  Direct observation of high-speed plasma outflows produced by magnetic reconnection
in solar impulsive events  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University