E-Print Archive

There are 4353 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase

Kenneth Phillips   Submitted: 2015-03-04 03:10

Solar X-ray spectra from the RESIK crystal spectrometer on the CORONAS-F spacecraft (spectral range 3.3-6.1A are analyzed for thirty-three flares using a method to derive abundances of Si, S, Ar, and K, emission lines of which feature prominently in the spectra. For each spectrum, the method first optimizes element abundances then derives the differential emission measure as a function of temperature based on a procedure given by Sylwester et al. and Withbroe. This contrasts with our previous analyses of RESIK spectra in which an isothermal assumption was used. The revised abundances (on a logarithmic scale with A(H) = 12) averaged for all the flares in the analysis are A(Si) = 7.53 ± 0.08 (previously 7.89 ± 0.13), A(S) = 6.91 ± 0.07 (7.16 ± 0.17), A(Ar) = 6.47 ± 0.08 (6.45 ± 0.07), and A(K) = 5.73 ± 0.19 (5.86 ± 0.20), with little evidence for time variations of abundances within the evolution of each flare. Our previous estimates of the Ar and K flare abundances are thus confirmed by this analysis but those for Si and S are reduced. This suggests the flare abundances of Si and Ar are very close to the photospheric abundance or solar proxies, while S is significantly less than photospheric and the K abundance is much higher than photospheric. These estimates differ to some extent from those in which a single enhancement factor applies to elements with first ionization potential less than 10~eV.

Authors: B. Sylwester, K. J. H. Phillips, J. Sylwester, A.. Kepa

Publication Status: Accepted for publication, The Astrophysical Journal
Last Modified: 2015-03-04 11:12
Go to main E-Print page  Solar Flare Element Abundances from the Solar Assembly for X-rays (SAX) on MESSENGER  A Type II Radio Burst without a Coronal Mass Ejection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University