E-Print Archive

There are 4352 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Quasi-periodic Slipping Magnetic Reconnection During an X-class Solar Flare Observed by the Solar Dynamics Observatory and Interface Region Imaging Spectrograph View all abstracts by submitter

Ting Li   Submitted: 2015-04-06 19:42

We firstly report the quasi-periodic slipping motion of flare loops during an eruptive X-class flare on 2014 September 10. The slipping motion was investigated at a specific location along one of the two ribbons and can be observed throughout the impulsive phase of the flare. The apparent slipping velocity was 20-110 km s-1 and the associated period was 3-6 min. The footpoints of flare loops appeared as small-scale bright knots observed in 1400 Å, corresponding to fine structures of the flare ribbon. These bright knots were observed to move along the southern part of the longer ribbon and also exhibited a quasi-periodic pattern. The Si IV 1402.77 Å line was redshifted by 30-50 km s-1 at the locations of moving knots with a ~ 40-60 km s-1 line width, larger than other sites of the flare ribbon. We suggest that the quasi-periodic slipping reconnection is involved in this process and the redshift at the bright knots is probably indicative of reconnection downflow. The emission line of Si IV at the northern part of the longer ribbon also exhibited obvious redshifts of about 10-70 km s-1 in the impulsive phase of the flare, with the redshifts at the outer edges of the ribbon larger than those in the middle. The redshift velocities at post-flare loops reached about 80-100 km s-1 in the transition region.

Authors: Ting Li, Jun Zhang
Projects: IRIS

Publication Status: ApJL, accepted
Last Modified: 2015-04-08 10:21
Go to main E-Print page  Kinematics of ICMEs/Shocks: Blast Wave Reconstruction Using Type-II Emissions  Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University