E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Role of Erupting Sigmoid in Triggering a Flare with Parallel and Large-Scale Quasi-Circular Ribbons View all abstracts by submitter

Navin Chandra Joshi   Submitted: 2015-09-07 21:28

In this paper, we present observations and analysis of an interesting sigmoid formation, eruption and the associated flare that occurred on 2014 April 18 using multi-wavelength data sets. We discuss the possible role of the sigmoid eruption in triggering the flare, which consists of two different set of ribbons: parallel ribbons as well as a large-scale quasi-circular ribbon. Several observational evidence and nonlinear force-free field extrapolation results show the existence of a large-scale fan-spine type magnetic configuration with a sigmoid lying under a section of the fan dome. The event can be explained with the following two phases. During the pre-flare phase, we observed the formation and appearance of sigmoid via tether-cutting reconnection between the two sets of sheared fields under the fan dome. The second, main flare phase, features the eruption of the sigmoid, the subsequent flare with parallel ribbons, and a quasi-circular ribbon. We propose the following multi-stage successive reconnections scenario for the main flare. First, tether-cutting reconnection is responsible for the formation and the eruption of the sigmoid structure. Second, the reconnection occurred in the wake of the erupting sigmoid produces the parallel flare ribbons on the both sides of the circular polarity inversion line. Third, the null-type reconnection higher in the corona, possibly triggered by the erupting sigmoid, leads to the formation of a large quasi-circular ribbon. For the first time we suggest a mechanism for this type of flare consisting of a double set of ribbons triggered by an erupting sigmoid in a large scale fan-spine type magnetic configuration.

Authors: Navin Chandra Joshi, Chang Liu, Xudong Sun, Haimin Wang, Tetsuya Magara, Y.-J. Moon

Publication Status: Accepted for Publication in ApJ
Last Modified: 2015-09-08 05:18
Go to main E-Print page  Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves  Damped transverse oscillations of interacting coronal loops  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University