E-Print Archive

There are 4353 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Spectroscopic observations and modelling of impulsive Alfvén waves along a polar coronal jet View all abstracts by submitter

Petr Jelinek   Submitted: 2015-09-29 13:33

Context. The magnetic reconnection in the solar corona results in impulsively generated Alfvén waves, which drive a polar jet. Aims. Using the Hinode/EIS 2′′ spectroscopic observations, we study the intensity, velocity, and full width at half maximum (FWHM) variations of the strongest Fe XII 195.12 Å line along the jet to find the signature of Alfvén waves. We numerically simulate the impulsively generated Alfvén waves within the vertical Harris current sheet, forming the jet plasma flows, and mimicking their observational signatures. Methods. Using the FLASH code and an atmospheric model with an embedded, weakly expanding magnetic field configuration within a vertical Harris current sheet, we solve the 2.5-dimensional (2.5D) ideal magnetohydrodynamic (MHD) equations to study the evolution of Alfvén waves and vertical flows forming the plasma jet. Results. At a height of ~5 Mm from the base of the jet, the red-shifted velocity component of Fe XII 195.12 Å line attains its maximum (5 km s-1), which converts into a blue-shifted velocity component between the altitude of 5-10 Mm. The spectral intensity continuously increases up to 10 Mm, while the FWHM still exhibits low values with an almost constant trend. This indicates that the reconnection point within the jet's magnetic field topology lies in the corona 5-10 Mm from its footpoint anchored in the Sun's surface. Beyond this height, the FWHM shows a growing trend. This may be the signature of Alfvén waves that impulsively evolve, due to reconnection, and propagate along the jet. From our numerical data, we evaluate space- and time- averaged Alfvén waves velocity amplitudes at different heights in the jet's current sheet, which contribute to the non-thermal motions and spectral line broadening. The synthetic width of Fe XII 195.12 Å line exhibits a similar trend of increment as in the observational data, possibly proving the existence of Alfvén waves, impulsively generated by reconnection, that propagate along the jet. Conclusions. The numerical simulations show that the impulsive perturbations in the transversal component of velocity at the reconnection point can excite the Alfvén waves. These waves can power the plasma jet higher into the polar coronal hole, as vertical plasma flows are also associated with these waves due to pondermotive force. The simulated Alfvén waves match well with the observed non-thermal broadening along the jet, which may provide direct spectroscopic evidence of the impulsively excited Alfvén waves within the polar jet.

Authors: P. Jelínek, A. K. Srivastava, K. Murawski, P. Kayshap and B. N. Dwivedi
Projects: None

Publication Status: A&A 581, A131, 2015
Last Modified: 2015-09-30 14:44
Go to main E-Print page  The appearance, motion, and disappearance of three-dimensional magnetic null points  A Circular-ribbon Solar Flare Following an Asymmetric Filament Eruption  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University