E-Print Archive

There are 4396 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Sources of Quasi-Periodic Pulses in the 18 August 2012 Flare View all abstracts by submitter

Nataliia Meshalkina   Submitted: 2016-01-11 20:01

We analyzed spatial and spectral characteristics of quasi-periodic pulses (QPP) for the 18 August 2012 limb are, using new data from a complex of spectral and imaging instruments developed by the Siberian Solar Radio Telescope team and the Wind/Konus gamma-ray spectrometer. A sequence of broadband pulses with periods of approximately ten seconds were observed in X-rays at energies between 25 keV and 300 keV, and in microwaves at frequencies from a few GHz up to 34 GHz during an interval of one minute. The QPP X-ray source was located slightly above the limb where the south legs of large and small EUV loop systems were close to each other. Before the QPPs the soft X-ray emission and the Ramaty High Energy Solar Spectroscopic Imager signal from the energy channels below 25 keV were gradually arising for several minutes at the same location. It was found that each X-ray pulse showed the soft-hard-soft behavior. The 17 and 34 GHz microwave source were at footpoints of the small loop system and the source emitting in the 4.2 - 7.4 GHz band in the large one. The QPPs were probably generated by modulation of acceleration processes in the energy release site. Analyzing radio spectra we determined the plasma parameters in the radio sources. The microwave pulses could be explained by relatively weak variations of the spectrum hardness of emitting electrons.

Authors: A. Altyntsev, N. Meshalkina, H. Meszarosova, M. Karlický, V. Palshin, S. Lesovoi
Projects: None

Publication Status: Solar Physics, in press
Last Modified: 2016-01-13 12:41
Go to main E-Print page  Radiative transfer in cylindrical threads with incident radiation VII. Multi-thread models  Alfv?nic Wave Heating of the Upper Chromosphere in Flares  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 1723
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University