E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Constraints on energy release in solar flares from RHESSI and GOES X-ray observations I. Physical parameters and scalings View all abstracts by submitter

Alexander Warmuth   Submitted: 2016-04-20 09:39

Aims. We constrain energy release and particle acceleration processes in solar flares by means of comprehensively characterizing the physical parameters of both the thermal plasma and the accelerated nonthermal particles using X-ray data. Our aim is to bridge the gap between detailed case studies and large statistical studies. Methods. We obtained time series of spectral fits and images for 24 flares ranging from GOES class C3.4 to X17.2 using RHESSI hard X-ray observations. These data were used to derive basic physical parameters for the thermal plasma (using the isothermal approximation) and the injected nonthermal electrons (assuming the thick-target model). For the thermal component, this was supplemented by GOES soft X-ray data. We derived the ranges and distributions of the various parameters, the scaling with flare importance, and the relation between thermal parameters derived from RHESSI and GOES. Finally, we investigated the relation between thermal and nonthermal parameters. Results. Temperature and emission measure of the thermal plasma are strongly correlated with the peak GOES X-ray flux. Higher emission measures result both from a larger source volume and a higher density, with the latter effect being more important. RHESSI consistently gives higher temperatures and lower emission measures than GOES does, which is a signature of a multithermal plasma. The discrepancy between RHESSI and GOES is particularly pronounced in the early flare phase, when the thermal X-ray sources tend to be large and located higher in the corona. The energy input rate by nonthermal electrons is correlated with temperature and with the increase rate of emission measure and thermal energy. Conclusions. The derived relations between RHESSI- and GOES-derived thermal parameters and the relation between thermal Parameters and energy input by nonthermal electrons are consistent with a two-component model of the thermal flare plasma. Both RHESSI and GOES observe a cooler plasma component (10-25 MK) that is generated by chromospheric evaporation caused by a nonthermal electron beam. In addition, a hotter component (>25 MK) is only detected by RHESSI; this component is more consistent with direct in situ heating of coronal plasma. With the exception of the early impulsive phase, RHESSI observes a combination of the evaporated and the directly heated component.

Authors: Warmuth, A., Mann, G.
Projects: RHESSI

Publication Status: A&A 588, A115 (2016)
Last Modified: 2016-04-20 13:22
Go to main E-Print page  Temporal Offsets between Maximum CME Speed Index and Solar, Geomagnetic, and Interplanetary Indicators during Solar Cycle 23 and the Ascending Phase of Cycle 24  Modelling of Nonthermal Microwave Emission From Twisted Magnetic Loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University