E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Temporal Offsets between Maximum CME Speed Index and Solar, Geomagnetic, and Interplanetary Indicators during Solar Cycle 23 and the Ascending Phase of Cycle 24 View all abstracts by submitter

Ali Kilcik   Submitted: 2016-04-20 23:52

On the basis of morphological analysis of yearly values of the maximum CME (coronal mass ejection) speed index, the sunspot number and total sunspot area, sunspot magnetic field, and solar flare index, the solar wind speed and interplanetary magnetic field strength, and the geomagnetic Ap and Dst indices, we point out the particularities of solar and geomagnetic activity during the last cycle 23, the long minimum which followed it and the ascending branch of cycle 24. We also analyze temporal offset between the maximum CME speed index and the above-mentioned solar, geomagnetic, and interplanetary indices. It is found that this solar activity index, analyzed jointly with other solar activity, interplanetary parameters, and geomagnetic activity indices, shows a hysteresis phenomenon. It is observed that these parameters follow different paths for the ascending and the descending phases of solar cycle 23. It is noticed that the hysteresis phenomenon represents a clue in the search for physical processes responsible for linking the solar activity to the near-Earth and geomagnetic responses.

Authors: A. Özgüç, A. Kilcik, K. Georgieva, B. Kirov
Projects: None

Publication Status: Accepted for publication by Solar Physics
Last Modified: 2016-04-26 07:40
Go to main E-Print page  The apparent critical decay index at the onset of solar prominence eruptions  Constraints on energy release in solar flares from RHESSI and GOES X-ray observations I. Physical parameters and scalings  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University