E-Print Archive

There are 4375 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Hydraulic effects in a radiative atmosphere with ionization View all abstracts by submitter

Axel Brandenburg   Submitted: 2016-05-19 23:19

In a paper of 1978, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has recently also been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability. We study the effects of partial ionization near the radiative surface on the formation of such magnetic flux concentrations. We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force resembling a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. In 1D models, due to partial ionization, an unstable stratification forms always near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in degree of ionization. In the 2D models without partial ionization, flux concentrations form close to the height where the blob is placed. In models with partial ionization, such flux concentrations form at the surface much above the blob. This is due to the corresponding unstable layer in specific entropy. With H- opacity, flux concentrations are weaker due to the stably stratified deeper parts. We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects entropy profiles causing the strong flux concentrations to form closer to the surface. We speculate that turbulence is needed to limit the strength of flux concentrations and homogenize the specific entropy to a more nearly marginal stratification.

Authors: Pallavi Bhat, Axel Brandenburg
Projects: None

Publication Status: Astron. Astrophys. 587, A90 (2016)
Last Modified: 2016-05-20 22:55
Go to main E-Print page  Why are flare ribbons associated with the spines of magnetic null points generically elongated?  Undamped transverse oscillations of coronal loops as a self-oscillatory process  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
One dimensional prominence threads: I. Equilibrium models
Time-dependent properties of sunspot groups - I. Lifetime and asymmetric evolution
Investigating Remote-sensing Techniques to Reveal Stealth Coronal Mass Ejections
ALMA observations of the variability of the quiet Sun at millimeter wavelengths
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University