E-Print Archive

There are 4371 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A 17 June 2011 polar jet and its presence in the background solar wind View all abstracts by submitter

Nai-Hwa Chen   Submitted: 2017-02-09 23:29

High-speed jet responses in the polar solar wind are enigmatic. Here we measure a jet response that emanates from the southern polar coronal hole on 17 June 2011 at the extreme speed of over 1200 km s-1. This response was recorded from the Sun-Earth line in Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) and Large Angle and Spectrometric Coronagraph/C2 and both Solar TErrestrial RElations Observatory Extreme Ultraviolet Imager and COR2 coronagraphs when the three spacecraft were situated ~90° from one another. These certify the coronal 3-D location of the response that is associated with an existing solar plume structure and show its high speed to distances of over 14 RS. This jetting is associated with magnetic flux changes in the polar region as measured by the SDO/Helioseismic and Magnetic Imager instrumentation over a period of several hours. The fastest coronal response observed can be tracked to a time near the period of greatest flux changes and to the onset of the brightest flaring in AIA. This high-speed response can be tracked directly as a small patch of outward moving brightness in coronal images as in Yu et al. (2014) where three slower events were followed from the perspective of Earth. This accumulated jet response has the largest mass and energy we have yet seen in 3-D reconstructions from Solar Mass Ejection Imager observations, and its outward motion is certified for the first time using interplanetary scintillation observations. This jet response is surrounded by similar high-speed patches, but these are smoothed out in Ulysses polar measurements, we speculate about how these dynamic activities relate to solar wind acceleration.

Authors: H.-S. Yu, B.V. Jackson, Y.-H. Yang, N.-H. Chen, A. Buffington, P. P. Hick
Projects: Other

Publication Status: publlished
Last Modified: 2017-02-10 11:07
Go to main E-Print page  Vortex and sink flows in eruptive flares as a model for coronal implosions  JPEG2000 Image Compression on Solar EUV Images  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University