E-Print Archive

There are 4396 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Interactive Multi-Instrument Database of Solar Flares View all abstracts by submitter

Viacheslav Sadykov   Submitted: 2017-02-15 15:42

Solar flares represent a complicated physical phenomenon observed in a broad range of the electromagnetic spectrum, from radiowaves to gamma-rays. For a complete understanding of the flares it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For efficient data search, integration of different flare lists and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (https://solarflare.njit.edu/). The web database if fully functional and allows the user to search for uniquely-identified flare events based on their physical descriptors and availability of observations of a particular set of instruments. Currently the data from three primary flare lists (GOES, RHESSI and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-Wind, OVSA flare catalogs, CACTus CME catalog, Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage), are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with observing summary, data links and multi-wavelength light curves for each flare event since January, 2002. We think that the created instrument will allow researchers significantly speed up the search of events of interest for statistical and case studies.

Authors: Viacheslav M Sadykov, Rishabh Gupta, Alexander G Kosovichev, Vincent Oria, Gelu M Nita
Projects: Other

Publication Status: Submitted to Solar Physics journal
Last Modified: 2017-02-16 08:47
Go to main E-Print page  Plasma Brightenings in a Failed Solar Filament Eruption  Moreton and EUV Waves Associated with an X1.0 Flare and CME Ejection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 1723
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University