E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
JHelioviewer - Time-dependent 3D visualisation of solar and heliospheric data View all abstracts by submitter

Daniel Mueller   Submitted: 2017-05-23 11:22

Context. Solar observatories are providing the world-wide community with a wealth of data, covering large time ranges (e.g. SOHO), multiple viewpoints (STEREO), and returning large amounts of data (SDO). In particular, the large volume of SDO data presents challenges: it is available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download practically due to their size and download data rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing and finding interesting data as efficiently as possible. Aims. To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods. The JPEG2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent and extendable via a plug-in architecture. Results. With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today. They can perform basic image processing in real time, track features on the Sun and interactively overlay magnetic field extrapolations. The software integrates solar event data and a time line display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.

Authors: D. Mueller, B. Nicula, S. Felix, F. Verstringe, B. Bourgoignie, A. Csillaghy, D. Berghmans, P. Jiggens, J. P. Garcia-Ortiz, J. Ireland, S. Zahniy, B. Fleck
Projects: None

Publication Status: accepted for publication in A&A
Last Modified: 2017-05-24 14:22
Go to main E-Print page  Origin and Structures of Solar Eruptions I: Magnetic Flux Rope (Invited Review)  Acceleration and Propagation of Solar Energetic Particles  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University