E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observing the Sun with the Atacama Large Millimeter-submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping View all abstracts by submitter

Stephen White   Submitted: 2017-05-24 16:59

The Atacama Large Millimeter-submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that utilizes the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions we derive quiet-Sun values at disk center of 7300 K at 3 mm and 5900 K at 1.3 mm wavelengths. These values have statistical uncertainties of order 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of order 25 arcsec, the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plage are amongst the hotter features while a large sunspot umbra shows up as a depression and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

Authors: S.M. White, K. Iwai, N.M. Phillips, R.E. Hills, A. Hirota, P. Yagoubov, G. Siringo, M. Shimojo, T.S. Bastian, A.S. Hales, T. Sawada, S. Asayama, M. Sugimoto, R.G. Marson, W. Kawasaki, E. Muller, T. Nakazato, K. Sugimoto, R. Brajsa, I. Skokic, M. Barta, S. Kim, A.J. Remijan, I. de Gregorio, S.A. Corder, H.S. Hudson, M. Loukitcheva, B. Chen, B. De Pontieu, G.D. Fleishmann, D.E. Gary, A. Kobelski, S. Wedemeyer, Y. Yan
Projects: ALMA

Publication Status: Solar Physics, in press
Last Modified: 2017-05-31 13:50
Go to main E-Print page  Increase in the amplitude of line-of-sight velocities of the small-scale motions in a solar filament before eruption  Origin and Structures of Solar Eruptions I: Magnetic Flux Rope (Invited Review)  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University