E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic Flux Cancelation as the Origin of Solar Quiet Region Pre-Jet Minifilaments View all abstracts by submitter

Navdeep Panesar   Submitted: 2017-07-05 17:01

We investigate the origin of ten solar quiet region pre-jet minifilaments, using EUV images from SDO/AIA and magnetograms from SDO/HMI. We recently found (Panesar et al. 2016b) that quiet region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancelation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancelation between minority-polarity and majority-polarity flux patches. In each of ten pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10-40% from before to after the minifilament appears. For our ten events, the minifilaments exist for periods ranging from 1.5 hr to two days before erupting to make a jet. Apparently, the flux cancelation builds highly sheared field that runs above and traces the neutral line, and the cool-transition-region-plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancelation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus our observations strongly support that quiet region magnetic flux cancelation results in both the formation of the pre-jet minifilament and its jet-driving eruption.

Authors: Navdeep K. Panesar, Alphonse C. Sterling, Ronald L. Moore
Projects: SDO-AIA

Publication Status: accepted for publication in ApJ
Last Modified: 2017-07-06 10:44
Go to main E-Print page  The eruption of a small-scale emerging flux rope as the driver of an M-class flare and a coronal mass ejection  Three-dimensional oscillatory magnetic reconnection  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University