E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Evaluation of Applicability of a Flare Trigger Model based on Comparison of Geometric Structures View all abstracts by submitter

Yumi Bamba   Submitted: 2018-02-01 18:54

The triggering mechanism(s) and critical condition(s) of solar flares are still not completely clarified, although various studies have attempted to elucidate them. We have also proposed a theoretical flare-trigger model based on MHD simulations Kusano et al. 2012, in which two types of small-scale bipole field, the so-called Opposite Polarity (OP) and Reversed Shear (RS) types of field, can trigger flares. In this study, we evaluated the applicability of our flare-trigger model to observation of 32 flares that were observed by the Solar Dynamics Observatory (SDO), by focusing on geometrical structures. We classified the events into six types, including the OP and RS types, based on photospheric magnetic field configuration, presence of precursor brightenings, and shape of the initial flare ribbons. As a result, we found that approximately 30% of the flares were consistent with our flare-trigger model, and the number of RS type triggered flares is larger than that of the OP type. We found none of the sampled events contradicts our flare model, although we cannot clearly determine the trigger mechanism of 70% of the flares in this study. We carefully investigated the applicability of our flare-trigger model and the possibility that other models can explain the other 70% of the events. Consequently, we concluded that our flare-trigger model has certainly proposed important conditions for flare-triggering.

Authors: Yumi Bamba and Kanya Kusano
Projects: SDO-AIA,SDO-HMI

Publication Status: Accepted by the Astrophysical Journal
Last Modified: 2018-02-05 22:08
Go to main E-Print page  Powerful Solar Flares of September 2017: Correspondence Between Parameters of Microwave Bursts and Proton Fluxes near Earth  Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University