E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Minimum Energy Principle Applied to Parker's Coronal Braiding and Nanoflaring Scenario View all abstracts by submitter

Markus J Aschwanden   Submitted: 2018-08-15 13:25

Parker's coronal braiding and nanoflaring scenario predicts the development of tangential discontinuities and highly misaligned magnetic field lines, as a consequence of random buffeting of their footpoints due to the action of sub-photospheric convection. The increased stressing of magnetic field lines is thought to become unstable above some critical misalignment angle and to result into local magnetic reconnection events, which is generally referred to as Parker's ''nanoflaring scenario''. In this study we show that the minimum (magnetic) energy principle leads to a bifurcation of force-free field solutions for helical twist angles at |ϕ(t)| = π, which prevents the build-up of arbitrary large free energies and misalignment angles. The minimum energy principle predicts that neighbored magnetic field lines are almost parallel (with misalignment angles of Δμ approx 1.6°-1.8°), and do not reach a critical misalignment angle prone to nanoflaring. Consequently, no nanoflares are expected in the divergence-free and force-free parts of the solar corona, while they are more likely to occur in the chromosphere and transition region.

Authors: Aschwanden, M.J. and van Ballegooijen,A.A.

Publication Status: submit. (2018 Aug 15)
Last Modified: 2018-08-27 11:22
Go to main E-Print page  Densities Probed by Coronal Type III Radio Burst Imaging  Eruptions from quiet Sun coronal bright points. I. Observations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University