E-Print Archive

There are 4352 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192 View all abstracts by submitter

Ting Li   Submitted: 2018-11-08 19:15

We present an extensive analysis of the X2.0-class confined flare on 2014 October 27 in the great active region AR 12192, observed by the IRIS and the SDO. The slipping motion of the substructures within the negative-polarity flare ribbon (R1) and continual reconnection-induced flows during the confined flare are first presented. The substructures within ribbon R1 were observed to slip in opposite directions at apparent speeds of 10-70 km s-1. The slipping motion exhibited the quasi-periodic pattern with a period of 80-110 s, which can be observed since the flare start and throughout the impulsive phase of the flare. Simultaneously quasi-periodic flows moved along a reverse-S shaped filament, with an average period of about 90 s. The period of reconnection-induced flows is similar to that of the slippage of ribbon substructures, implying the occurrence of quasi-periodic slipping magnetic reconnection. The spectral observations showed that the Si IV line was blueshifted by 50-240 km s-1 at the location of the flows. During the process of the flare, the filament did not show the rise phase and was not associated with any failed eruption. The flare mainly consisted of two sets of magnetic systems, with both of their east ends anchoring in ribbon R1. We suggest that the slipping magnetic reconnection between two magnetic systems triggers the confined flare.

Authors: Ting Li, Yijun Hou, Shuhong Yang & Jun Zhang
Projects: IRIS

Publication Status: accepted for publication in ApJ
Last Modified: 2018-11-09 15:38
Go to main E-Print page  Drifting of the line-tied footpoints of CME flux-ropes  Oscillations accompanying a He I 10830 ? negative flare in a solar facula  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University