E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Study of current sheets in the wake of two crossing filaments eruption View all abstracts by submitter

Leping Li   Submitted: 2018-11-21 18:43

Employing Solar Dynamic Observatory/Atmosphertic Imaging Assembly (AIA) multi-wavelength images, we study an eruption of two crossing filaments, and firstly report the current sheets (CSs) connecting the lower flare ribbons and the upper erupting filaments. On July 8, 2014, two crossing filaments are observed in the NOAA active region (AR) 12113. The lower-lying filament rises first, and then meets the higher-lying one. Thereafter, both of them erupt together. The filament eruption draws the overlying magnetic field lines upward, leading to the approach of two legs, with opposite magnetic polarities, of the overlying field lines. Two sets of bright CSs form at the interface of these two legs, and magnetic reconnection takes place in the CSs producing the underneath flare ribbons and post-flare loops. Several bright plasmoids appear in the CSs, and propagate along the CSs bi-directionally. The CSs and plasmoids are observed in AIA multi-wavelength channels, indicating that both of them have been heated during the reconnection process, with hot and warm components. Employing the differential emission measure (EM) analysis, we find that both the temperature and EM of the CSs decrease from the flare arcades outward to the erupting filaments, and those of the plasmoids are significantly larger than the regions where no plasmoid is detected.

Authors: Dai, J., Yang, J. Y., Li, L. P., Zhang, J.
Projects: SDO-AIA,SDO-HMI,SoHO-LASCO

Publication Status: accepted for publication in ApJ
Last Modified: 2018-11-22 20:09
Go to main E-Print page  Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations  Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University