E-Print Archive

There are 4396 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Si IV Resonance Line Emission During Solar Flares: Non-LTE, Non-equilibrium, Radiation Transfer Simulations View all abstracts by submitter

Graham Stewart Kerr   Submitted: 2018-11-28 07:58

The Interface Region Imaging Spectrograph (IRIS) routinely observes the Si IV resonance lines. When analyzing observations of these lines it has typically been assumed they form under optically thin conditions. This is likely valid for the quiescent Sun, but this assumption has also been applied to the more extreme flaring scenario. We used 36 electron beam driven radiation hydrodynamic solar flare simulations, computed using the RADYN code, to probe the validity of this assumption. Using these simulated atmospheres we solved the radiation transfer equations to obtain the non-LTE, non-equilibrium populations, line profiles, and opacities for a model Silicon atom, including charge exchange processes. This was achieved using the `minority species' version of RADYN. The inclusion of charge exchange resulted in a substantial fraction of Si IV at cooler temperatures than those predicted by ionisation equilibrium. All simulations with an injected energy flux F>5x1010 erg cm-2 s-1 resulted in optical depth effects on the Si IV emission, with differences in both intensity and line shape compared to the optically thin calculation. Weaker flares (down to F~5x109 erg cm-2 s-1) also resulted in Si IV emission forming under optically thick conditions, depending on the other beam parameters. When opacity was significant, the atmospheres generally had column masses in excess of 5x10-6 g cm-2 over the temperature range 40 to 100 kK, and the Si IV formation temperatures were between 30 and 60 kK. We urge caution when analyzing Si IV flare observations, or when computing synthetic emission without performing a full radiation transfer calculation.

Authors: Graham S. Kerr, Mats Carlsson, Joel C. Allred, Peter R. Young, and Adrian N. Daw
Projects: IRIS

Publication Status: ApJ (Accepted)
Last Modified: 2018-11-28 12:10
Go to main E-Print page  IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation  Study of current sheets in the wake of two crossing filaments eruption  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 1723
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University