E-Print Archive

There are 4353 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock View all abstracts by submitter

Yuandeng Shen   Submitted: 2019-01-26 18:16

We report the first unambiguous quasi-periodic large-scale extreme-ultraviolet (EUV) wave or shock that was detected by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. During the whip-like unwinding eruption of a small filament on 2012 April 24, multiple consecutive large-scale wavefronts emanating from AR11467 were observed simultaneously along the solar surface and a closed transequatorial loop system. In the meantime, an upward propagating dome-shaped wavefront was also observed, whose initial speed and deceleration are about 1392 km s-1 and 1.78 km s-2, respectively. Along the solar surface, the quasi-peridoic wavefronts had a period of about 163 ± 21 seconds and propagated at a nearly constant speed of 747 ± 26 km s-1; they interacted with active region AR11469 and launched a sympathetic upward propagating secondary EUV wave. The wavefronts along the loop system propagated at a speed of 897 km s-1, and they were reflected back at the southern end of the loop system at a similar speed. In addition to the propagating waves, a standing kink wave was also present in the loop system simultaneously. Periodicity analysis reveals that the period of the wavefronts was consistent with that of the unwinding helical structures of the erupting filament. Based on these observational facts, we propose that the observed quasi-periodic EUV wavefronts were most likely excited by the periodic unwinding motion of the filament helical structures. In addition, two different seismological methods are applied to derive the magnetic field strength of the loop system, and for the first time the reliability of these inversion techniques are tested with the same magnetic structure.

Authors: Shen, Yuandeng; Chen, P. F.; Liu, Ying D.; Shibata, Kazunari; Tang, Zehao; Liu, Yu
Projects: SDO-AIA

Publication Status: Accepted by the ApJ
Last Modified: 2019-01-27 15:02
Go to main E-Print page  Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events  Coronal Imaging with the Solar UltraViolet Imager  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University