E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Modelling the Effect of Mass-Draining on Prominence Eruptions View all abstracts by submitter

Jack M. Jenkins   Submitted: 2019-01-31 02:50

Quiescent solar prominences are observed to exist within the solar atmosphere for up to several solar rotations. Their eruption is commonly preceded by a slow increase in height that can last from hours to days. This increase in the prominence height is believed to be due to their host magnetic flux rope transitioning through a series of neighbouring quasi-equilibria before the main loss-of-equilibrium that drives the eruption. Recent work suggests that the removal of prominence mass from a stable, quiescent flux rope is one possible cause for this change in height. However, these conclusions are drawn from observations and are subject to interpretation. Here we present a simple model to quantify the effect of ``mass-draining'' during the pre-eruptive height-evolution of a solar flux rope. The flux rope is modeled as a line current suspended within a background potential magnetic field. We first show that the inclusion of mass, up to 1012~kg, can modify the height at which the line current experiences loss-of-equilibrium by up to 14%. Next, we show that the rapid removal of mass prior to the loss-of-equilibrium can allow the height of the flux rope to increase sharply and without upper bound as it approaches its loss-of-equilibrium point. This indicates that the critical height for the loss-of-equilibrium can occur at a range of heights depending explicitly on the amount and evolution of mass within the flux rope. Finally, we demonstrate that for the same amount of drained mass, the effect on the height of the flux rope is up to two order of magnitude larger for quiescent than for active region prominences.

Authors: Jack M. Jenkins, Matthew Hopwood, Pascal Démoulin, Gherardo Valori, Guillaume Aulanier, David M. Long, Lidia van Driel-Gesztelyi
Projects: None

Publication Status: Accepted for publication in the Astrophysical Journal
Last Modified: 2019-02-04 19:19
Go to main E-Print page  Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab  Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University