E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab View all abstracts by submitter

Ramon Oliver   Submitted: 2019-02-04 01:44

We present a method to determine approximations to a system's normal mode eigenfrequency and eigenfunctions from time-dependent numerical simulations. The method proceeds iteratively and each step consists of (i) a time-dependent numerical simulation followed by (ii) the Complex Empirical Orthogonal Function (CEOF) analysis of the simulation results. The CEOF analysis provides an approximation to the normal mode eigenfunctions that can be used to set up the initial conditions for the numerical simulation of the following iteration, in which an improved normal mode approximation is obtained. The iterative process is stopped once the global difference between successive approximate eigenfunctions is below a prescribed threshold. In this paper we test the method with a problem for which the normal modes can be computed analytically, namely the transverse oscillations of a magnetic slab, a configuration that has been extensively used in the analysis of transverse coronal loop oscillations. Our equilibrium contains material discontinuities that result in one eigenfunction with a jump across these discontinuities and two eigenfunctions whose normal derivatives are discontinuous there. After 4 iterations, the approximation to the frequency and eigenfunctions are accurate to lesssim 0.7% except for the eigenfunction with discontinuities, which displays a much larger error at these positions.

Authors: S. Rial, I. Arregui, R. Oliver, and J. Terradas
Projects:

Publication Status: Submitted
Last Modified: 2019-02-06 11:00
Go to main E-Print page  Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams  Modelling the Effect of Mass-Draining on Prominence Eruptions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University