E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Two-step evolution of a rising flux rope resulting in a confined solar flare View all abstracts by submitter

Shuhong Yang   Submitted: 2019-05-02 19:06

Combining the Solar Dynamics Observatory and the New Vacuum Solar Telescope observations, we study a confined flare triggered by a rising flux rope within the trailing sunspots of active region 12733. The flux rope lying above the sheared polarity inversion line can be constructed through magnetic extrapolation but could not be detected in multi-wavelength images at the pre-flare stage. The conspicuous shearing motions between the opposite-polarity fields in the photosphere are considered to be responsible for the flux rope formation. The maximum twist of the flux rope is as high as -1.76, and then the flux rope rises due to the kink instability. Only when the flare starts can the flux rope be observed in high-temperature wavelengths. The differential emission measure results confirm that this flux rope is a high-temperature structure. Associated with the rising flux rope, there appear many post-flare loops and a pair of flare ribbons. When the rising flux rope meets and reconnects with the large-scale overlying field lines, a set of large-scale twisted loops are formed, and two flare ribbons propagating in opposite directions appear on the outskirts of the former ribbons, indicating that the twist of the flux rope is transferred to a much larger system. These results imply that the external reconnection between the rising flux rope and the large-scale overlying loops plays an important role in the confined flare formation.

Authors: Shuhong Yang, Jun Zhang, Qiao Song, Yi Bi, Ting Li
Projects: New Vacuum Solar Telescope (NVST),SDO-AIA,SDO-HMI

Publication Status: Accepted for publication in ApJ
Last Modified: 2019-05-03 16:04
Go to main E-Print page  Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare  Why torus-unstable solar filaments experience failed eruption?  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University