E-Print Archive

There are 4353 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections View all abstracts by submitter

Markus J Aschwanden   Submitted: 2019-06-13 09:23

The free energy that is dissipated in a magnetic reconnection process of a solar flare, generally accompanied by a coronal mass ejection (CME), has been considered as the ultimate energy source of the global energy budget of solar flares in previous statistical studies. Here we explore the effects of the aerodynamic drag force on CMEs, which supplies additional energy from the slow solar wind to a CME event, besides the magnetic energy supply. For this purpose we fit the analytical aerodynamic drag model of Cargill (2004) and Vrsnak et al. (2013) to the height-time profiles r(t) of LASCO/SOHO data in 14,316 CME events observed during the first 8 years (2010-2017) of the SDO era {\bf (ensuring EUV coverage with AIA)}. Our main findings are: (i) a mean solar wind speed of w=472 ± 414 km s-1, (ii) a maximum drag-accelerated CME energy of Edrag ≈ 2 * 1032 erg, (iii) a maximum flare-accelerated CME energy of Eflare < 1.5 * 1033 erg; (iv) the ratio of the summed kinetic energies of all flare-accelerated CMEs to the drag-accelerated CMEs amounts to a factor of 4; (v) the inclusion of the drag force slightly lowers the overall energy budget of CME kinetic energies in flares from ~ 7% to ~ 4%; and (vi) the arrival times of CMEs at Earth can be predicted with an accuracy of ~23%.

Authors: Aschwanden, M.J. and Gopalswamy, N.
Projects: None

Publication Status: The Astrophysical Journal 877:149 (14pp)
Last Modified: 2019-06-15 17:38
Go to main E-Print page  Global energetics of solar flares: VIII. The Low-Energy Cutoff  Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University