E-Print Archive

There are 4352 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
NVST observations of collision-induced apparent fan-shaped jets View all abstracts by submitter

Ting Li   Submitted: 2020-02-09 20:35

Using high-quality Hα observations from the New Vacuum Solar Telescope, we first report apparent fan-shaped jets (AFJs) generated during the interaction between primary fan-shaped jets (FJs) and nearby facula magnetic structure. The primary FJs were intermittently launched from a sunspot penumbra with negative-polarity magnetic fields in active region 12740 on 2019 May 6, accompanied by impulsive brightenings at the base. While the propagating FJ encountered and collided with the negative-polarity magnetic structure of the west facula, the density of jet material was enhanced to the east of the facula. Meanwhile, the jet structures exhibited a deflection towards the north-west at the jet?facula collision location. Then the primary FJ evolved into two parts, with one part being reflected away from the facula and the other part forming an AFJ. Easily distinguished from the primary FJ, the ejecting AFJ was more ordered and had an apparent end at the facula. The AFJ was impulsively accelerated to speeds of 100 km s-1, and reached lengths of up to 40 Mm. The observed AFJ had a similar morphology to the fan-shaped quasi-separatrix layer (QSL) between the penumbra and facula magnetic systems, implying that the material of the AFJ was mainly guided by the fan plane of the QSL.We suggest that the collision does not cause a change in the field-line connectivity and only leads to the redistribution of jet material.

Authors: Ting Li,Yijun Hou,Jun Zhang and Yongyuan Xiang
Projects: New Vacuum Solar Telescope (NVST)

Publication Status: MNRAS,Volume 492, Pages 2510?2516
Last Modified: 2020-02-11 09:56
Go to main E-Print page  Data-driven MHD Simulation of the Formation and Initiation of a Large-scale Pre-flare Magnetic Flux Rope in Solar Active Region 12371  Cosmic ray interactions in the solar atmosphere  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University