E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24 View all abstracts by submitter

Yumi Bamba   Submitted: 2020-05-05 00:17

The largest X9.3 solar flare in solar cycle 24 and the preceding X2.2 flare occurred on September 6, 2017, in the solar active region NOAA 12673. This study aims to understand the onset mechanism of these flares via analysis of multiple observational datasets from the Hinode and Solar Dynamics Observatory and results from a non-linear force-free field extrapolation. The most noticeable feature is the intrusion of a major negative-polarity region, appearing similar to a peninsula, oriented northwest into a neighboring opposite-polarity region. We also observe proxies of magnetic reconnection caused by related to the intrusion of the negative peninsula: rapid changes of the magnetic field around the intruding negative peninsula; precursor brightening at the tip of the negative peninsula, including a cusp-shaped brightening that shows a transient but significant downflow (~100 km s-1) at a leg of the cusp; a dark tube-like structure that appears to be a magnetic flux rope that erupted with the X9.3 flare; and coronal brightening along the dark tube-like structure that appears to represent the electric current generated under the flux rope. Based on these observational features, we propose that (1) the intrusion of the negative peninsula was critical in promoting the push-mode magnetic reconnection that forms and grows a twisted magnetic flux rope that erupted with the X2.2 flare, (2) the continuing intrusion progressing even beyond the X2.2 flare is further promoted to disrupt the equilibrium that leads the reinforcement of the magnetic flux rope that erupted with the X9.3 flare.

Authors: Yumi Bamba, Satoshi Inoue, Shinsuke Imada
Projects: Hinode/EIS,Hinode/SOT,Hinode/XRT,SDO-AIA,SDO-HMI

Publication Status: published (ApJ)
Last Modified: 2020-05-06 13:30
Go to main E-Print page  Temporal evolution of oscillating coronal loops  On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University