E-Print Archive

There are 4396 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Survey of Computational Tools in Solar Physics View all abstracts by submitter

Monica Bobra   Submitted: 2020-05-13 12:09

The SunPy Project developed a 13-question survey to understand the software and hardware usage of the solar physics community. Of the solar-physics community, 364 members across 35 countries responded to our survey. We found that 99±0.5% of respondents use software in their research and 66% use the Python scientific-software stack. Students are twice as likely as faculty, staff scientists, and researchers to use Python rather than Interactive Data Language (IDL). In this respect, the astrophysics and solar-physics communities differ widely: 78% of solar-physics faculty, staff scientists, and researchers in our sample uses IDL, compared with 44% of astrophysics faculty and scientists sampled by Momcheva and Tollerud (2015). 63±4% of respondents have not taken any computer-science courses at an undergraduate or graduate level. We also found that most respondents use consumer hardware to run software for solar-physics research. Although 82% of respondents work with data from space-based or ground-based missions, some of which (e.g. the Solar Dynamics Observatory and Daniel K. Inouye Solar Telescope) produce terabytes of data a day, 14% use a regional or national cluster, 5% use a commercial cloud provider, and 29% use exclusively a laptop or desktop. Finally, we found that 73±4% of respondents cite scientific software in their research, although only 42±3% do so routinely.

Authors: Monica G. Bobra, Stuart J. Mumford, Russell J. Hewett, Steven D. Christe, Kevin Reardon, Sabrina Savage, Jack Ireland, Tiago M. D. Pereira, Bin Chen, and David Pérez-Suárez
Projects: None

Publication Status: Published in Solar Physics: Solar Physics, 295, 57 (2020)
Last Modified: 2020-05-14 08:56
Go to main E-Print page  HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare  Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 17–23
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University