E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations View all abstracts by submitter

Valentina Zharkova   Submitted: 2020-05-12 14:26

The 6 September 2017 X9.3 solar flare produced very unique observations of magnetic field transients and a few seismic responses, or sunquakes, detected by the Helioseismic and Magnetic Imager (HMI) instrument aboard Solar Dynamic Observatory (SDO) spacecraft, including the strongest sunquake ever reported. This flare was one of a few flares occurring within a few days or hours in the same active region. Despite numerous reports of the fast variations of magnetic field, and seismic and white light emission, no attempts were made to interpret the flare features using multi-wavelength observations. In this study, we attempt to produce the summary of available observations of the most powerful flare of the 6 September 2017 obtained using instruments with different spatial resolutions (Paper 1) and to provide possible interpretation of the flaring events, which occurred in the locations of some seismic sources (paper 2). We employed non-linear force-free field (NLFFF) extrapolations followed by magnetohydrodynamic simulations in order to identify the presence of several magnetic flux ropes prior to the initiation of this X9.3 flare. Sunquakes were observed using the directional holography and timeľdistance diagram detection techniques. The high-resolution method to detect the Hα line kernels in the CRISP instrument at the diffraction level limit was also applied. We explore the available gamma-ray (GR), hard X-ray (HXR), Lyman-α, and extreme ultra-violet (EUV) emission for this flare comprising two flaring events observed by space- and ground-based instruments with different spatial resolutions. For each flaring event we detect a few seismic sources, or sunquakes, using Dopplergrams from the HMI/SDO instrument coinciding with the kernels of Hα line emission with strong redshifts and white light sources. The properties of sunquakes were explored simultaneously with the observations of HXR (with KONUS/WIND and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) payload), EUV (with the Atmospheric Imaging Assembly (AIA/SDO and the EUV Imaging Spectrometer (EIS) aboard Hinode payload), Hα line emission (with the CRisp Imaging Spectro-Polarimeter (CRISP) in the Swedish Solar Telescope (SST)), and white light emission (with HMI/SDO). The locations of sunquake and Hα kernels are associated with the footpoints of magnetic flux ropes formed immediately before the X9.3 flare onset. For the first time we present the detection of the largest sunquake ever recorded with the first and second bounces of acoustic waves generated in the solar interior, the ripples of which appear at a short distance of 5-8 Mm from the initial flare location. Four other sunquakes were also detected, one of which is likely to have occurred 10 minutes later in the same location as the largest sunquake. Possible parameters of flaring atmospheres in the locations with sunquakes are discussed using available temporal and spatial coverage of hard X-ray, gamma-ray, EUV, hydrogen Hα-line, and white light emission in preparation for their use in an interpretation to be given in Paper 2.

Authors: S. Zharkov, S. Matthews, V. Zharkova, M. Druett, S. Inoue, I. E. Dammasch, C. Macrae
Projects:

Publication Status: AStronomy and Astrophysics, in press
Last Modified: 2020-05-14 08:57
Go to main E-Print page  A Survey of Computational Tools in Solar Physics  The PDFI_SS Electric Field Inversion Software  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830┼ Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University