E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A new method for estimating global coronal wave properties from their interaction with solar coronal holes View all abstracts by submitter

Isabell Piantschitsch   Submitted: 2020-06-17 03:57

Global coronal waves (CWs) and their interaction with coronal holes (CHs) result, among other effects, in the formation of reflected and transmitted waves. Observations of such events provide us with measurements of different CW parameters, such as phase speed and intensity amplitudes. However, several of these parameters are provided with only intermediate observational quality, other parameters, such as the phase speed of transmitted waves, can hardly be observed in general. We present a new method to estimate crucial CW parameters, such as density and phase speed of reflected as well as transmitted waves, Mach numbers and density values of the CH's interior, by using analytical expressions in combination with basic and most accessible observational measurements. The transmission and reflection coefficients are derived from linear theory and subsequently used to calculate estimations for phase speeds of incoming, reflected and transmitted waves. The obtained analytical expressions are validated by performing numerical simulations of CWs interacting with CHs. This new method enables to determine in a fast and straightforward way reliable CW and CH parameters from basic observational measurements which provides a powerful tool to better understand the observed interaction effects between CWs and CHs.

Authors: I. Piantschitsch, J. Terradas, M. Temmer
Projects: None

Publication Status: A&A (accepted)
Last Modified: 2020-06-17 13:07
Go to main E-Print page  Solar Flare-CME Coupling Throughout Two Acceleration Phases of a Fast CME  Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University