E-Print Archive

There are 4352 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares View all abstracts by submitter

Ting Li   Submitted: 2020-07-16 21:38

We establish the largest eruptive/confined flare database to date and analyze 322 flares of GOES class M1.0 and larger that occurred during 2010-2019, i.e., almost spanning the entire solar cycle 24. We find that the total unsigned magnetic flux (ΦAR) of active regions (ARs) is a key parameter in governing the eruptive character of large flares, with the proportion of eruptive flares exhibiting a strong anti-correlation with ΦAR. This means that an AR containing a large magnetic flux has a lower probability for the large flares it produces to be associated with a coronal mass ejection (CME). This finding is supported by the high positive correlation we obtained between the critical decay index height and ΦAR, implying that ARs with a larger ΦAR have a stronger magnetic confinement. Moreover, the confined flares originating from ARs larger than 1.01023 Mx have several characteristics in common: stable filament, slipping magnetic reconnection and strongly sheared post-flare loops. Our findings reveal new relations between the magnetic flux of ARs and the occurrence of CMEs in association with large flares. These relations obtained here provide quantitative criteria for forecasting CMEs and adverse space weather, and have also important implications for "superflares" on solar-type stars and stellar CMEs.

Authors: Ting Li, Yijun Hou, Shuhong Yang, Jun Zhang, Lijuan Liu, Astrid M. Veronig
Projects: SDO-HMI

Publication Status: accepted for publication in ApJ
Last Modified: 2020-07-18 21:49
Go to main E-Print page  Statistical Analysis of the Relation between Coronal Mass Ejections and Solar Energetic Particles  Case study of multi-temperature coronal jets for emerging flux MHD models  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University