E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Statistical Analysis of the Relation between Coronal Mass Ejections and Solar Energetic Particles View all abstracts by submitter

Kosuke Kihara   Submitted: 2020-07-17 01:18

To improve the forecasting capability of impactful solar energetic particle (SEP) events, the relation between coronal mass ejections (CMEs) and SEP events needs to be better understood. Here we present a statistical study of SEP occurrences and timescales with respect to the CME source locations and speeds, considering all 257 fast (vCME ≥ 900 km s-1) and wide (angular width ≥ 60) CMEs that occurred between December 2006 and October 2017. We associate them with SEP events at energies above 10 MeV. Examination of the source region of each CME reveals that CMEs more often accompany a SEP event if they originate from the longitude of E20-W100 relative to the observer. However, a SEP event could still be absent if the CME is < 2000 km s-1. For the associated CME-SEP pairs, we compute three timescales for each of the SEP events, following Kahler (2005, 2013); namely the timescale of the onset (TO), the rise time (TR), and the duration (TD). They are correlated with the longitude of the CME source region relative to the footpoint of the Parker spiral (ΔΦ) and vCME. The TO tends to be short for |ΔΦ| < 60 . This trend is weaker for TR and TD. The SEP timescales are only weakly correlated with vCME. Positive correlations of both TR and TD with vCME are seen in poorly connected (large |ΔΦ|) events. Additionally, TO appears to be negatively correlated with vCME for events with small |ΔΦ|.

Authors: Kosuke Kihara, Yuwei Huang, Nobuhiko Nishimura, Nariaki V. Nitta, Seiji Yashiro, Kiyoshi Ichimoto, Ayumi Asai
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2020-07-18 21:49
Go to main E-Print page  Polarisation and source structure of solar stationary type IV radio bursts  Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University