E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
3D propagation of relativistic solar protons through interplanetary space View all abstracts by submitter

Silvia Dalla   Submitted: 2020-08-03 07:34

Context. Solar energetic particles (SEPs) with energy in the GeV range can propagate to Earth from their acceleration region near the Sun and produce ground level enhancements (GLEs). The traditional approach to interpreting and modelling GLE observations assumes particle propagation which is only parallel to the magnetic field lines of interplanetary space, that is, spatially 1D propagation. Recent measurements by PAMELA have characterised SEP properties at 1 AU for the ∼100 MeV–1 GeV range at high spectral resolution. Aims. We model the transport of GLE-energy solar protons using a 3D approach to assess the effect of the heliospheric current sheet (HCS) and drifts associated to the gradient and curvature of the Parker spiral. We derive 1 AU observables and compare the simulation results with data from PAMELA. Methods. We use a 3D test particle model including a HCS. Monoenergetic populations are studied first to obtain a qualitative picture of propagation patterns and numbers of crossings of the 1 AU sphere. Simulations for power law injection are used to derive intensity profiles and fluence spectra at 1 AU. A simulation for a specific event, GLE 71, is used for comparison purposes with PAMELA data. Results. Spatial patterns of 1 AU crossings and the average number of crossings per particle are strongly influenced by 3D effects, with significant differences between periods of A+ and A- polarities. The decay time constant of 1 AU intensity profiles varies depending on the position of the observer and it is not a simple function of the mean free path as in 1D models. Energy dependent leakage from the injection flux tube is particularly important for GLE energy particles, resulting in a rollover in the spectrum.

Authors: S. Dalla, G. De Nolfo, A. Bruno, J. Giacalone, T. Laitinen, S. Thomas, M. Battarbee, M.S. Marsh
Projects: None

Publication Status: Accepted by A&A
Last Modified: 2020-08-03 19:21
Go to main E-Print page  Additivity of relative magnetic helicity in finite volumes  Heating Rates for Protons and Electrons in Polar Coronal Holes: Empirical Constraints from the Ultraviolet Coronagraph Spectrometer  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University