E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Recurring Homologous Solar Eruptions in NOAA AR 11429 View all abstracts by submitter

Suman Dhakal   Submitted: 2020-09-19 22:00

We present the study of three homologous solar eruptions from NOAA active region (AR) 11429 over four days. This large and complex AR is divided into two relatively simple subregions: northeast (NE) and southwest (SW). Recurrent eruptions occurred from the SW subregion over different evolutionary phases, which provided a unique opportunity to isolate the physical processes responsible for solar eruptions. Persistent shearing and convergence of opposite magnetic polarities led to continuous flux cancellation along the SW polarity inversion line (PIL). A filament persistently lying along the SW PIL was observed to survive each eruption, which suggests a partial eruption of the magnetic system. Further, following the first and second eruptions, a sigmoidal magnetic structure of similar morphology was reformed along the SW PIL. The photospheric motion of magnetic flux continuously injected and stored the negative helicity in the partially erupted magnetic system and built up the magnetic free energy for the successive eruptions. These results suggest that the shearing motion and magnetic flux cancellation of opposite fluxes were: (1) the dominant factor, irrespective of the evolutionary phase, that contributed to the recurrent homologous eruption, and (2) the key processes of forming the erupting structure, likely a magnetic flux rope; its long-lasting continuation results in the reformation of an identical erupting structure. The study also finds that similar magnetic topology could result in the magnetic reconnection at the same location, and such flares during the precursor phase would help in the eruption by decreasing the constraint of the overlying magnetic field.

Authors: Dhakal, S. K., Zhang, J., Vemareddy, P., Karna, N.

Publication Status: ApJ
Last Modified: 2020-09-20 12:53
Go to main E-Print page  Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker   Solar Probe  Resonant absorption: transformation of compressive motions into vortical motion  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University