E-Print Archive

There are 4371 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe View all abstracts by submitter

Jiong Qiu   Submitted: 2020-09-22 20:58

The Wide-field Imager for Solar Probe (WISPR) onboard the Parker Solar Probe (PSP), observing in white light, has a fixed angular field of view, extending from 13.5 to 108 degrees from the Sun and approximately 50 degrees in the transverse directions. Because of the highly elliptical orbit of PSP, the physical extent of the imaged coronal region varies directly as the distance from the Sun, requiring new techniques for analysis of the motions of observed density features. Here, we present a technique for determining the 3D trajectory of CMEs and other coronal ejecta moving radially at a constant velocity by first tracking the motion in a sequence of images and then applying a curve-fitting procedure to determine the trajectory parameters (distance vs. time, velocity, longitude and latitude). To validate the technique, we have determined the trajectory of two CMEs observed by WISPR that were also observed by another white-light imager, either LASCO/C3 or STEREO-A/HI1. The second viewpoint was used to verify the trajectory results from this new technique and help determine its uncertainty.

Authors: P. C. Liewer, J. Qiu, P. Penteado, J. R. Hall, A. Vourlidas, R. A. Howard
Projects: PSP-WISPR

Publication Status: Solar Physics, accepted
Last Modified: 2020-09-23 13:10
Go to main E-Print page  Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra  Recurring Homologous Solar Eruptions in NOAA AR 11429  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Poissonian origin of power laws in solar flare waiting time distributions
Correlation of the sunspot number and the waiting time distribution of solar flares, coronal mass ejections, and solar wind switchback events observed with the Parker Solar Probe
Self-organized criticality in stellar flares
Finite system-size effectrs in self-organizing criticality systems
Global energetics of solar flares. XII. Energy scaling laws
Global energetics of solar flares. XI. Flare magnitude predictions of the GOES class
Are the Magnetic Fields Radial in the Solar Polar Region?
Fast magnetoacoustic wave trains: from tadpoles to boomerangs
Multi-channel coronal hole detection with convolutional neural networks
FOXSI-2 Solar Microflares. II. Hard X-ray Imaging Spectroscopy and Flare Energetics
Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope
Variation of Magnetic Flux Ropes through Major Solar Flares
MHD Modeling of Solar Coronal Magnetic Evolution Driven by Photospheric Flow
The Causes of Peripheral Coronal Loop Contraction and Disappearance Revealed in a Magnetohydrodynamic Simulation of Solar Eruption
The Sun's Dynamic Extended Corona Observed in Extreme Ultraviolet
Magnetohydrodynamic Simulations of Spicular Jet Propagation Applied to Lower Solar Atmosphere Model
Thermal Trigger for Solar Flares II: Effect of the Guide Magnetic Field
The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University