E-Print Archive

There are 4396 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra View all abstracts by submitter

Nataliia Meshalkina   Submitted: 2020-09-22 23:03

On 23 July 2016 after 05:00 UTC, the first 48-antenna stage of the Siberian Radioheliograph detected two flares, M7.6 and M5.5, which occurred within half an hour in the same active region. Their multi-instrument analysis reveals the following. The microwave spectra were flattened at low frequencies and the spectrum of the stronger burst had a lower turnover frequency. Each flare was eruptive, emitted hard X-rays and γ -rays exceeding 800 keV, and had a rare three-ribbon configuration. An extended hard X-ray source associated with a longest middle ribbon was observed in the second flare. Unusual properties of the microwave spectra are accounted for by a distributed multi-loop system in an asymmetric magnetic configuration that our modeling supports. Microwave images did not resolve compact configurations in these flares, which may also be revealed incompletely in hard Xray images because of their limited dynamic range. Being apparently simple and compact, non-thermal sources corresponded to the structures observed in the extreme ultraviolet. In the scenario proposed for two successive eruptive flares in a configuration with a coronal magnetic null, the first filament eruption causes a flare and facilitates the second eruption that also results in a flare. Three persistent flare ribbons reflect magnetic reconnection at the coronal-null region forced by the filament motions.

Authors: V.V. Grechnev, N.S. Meshalkina, A.M. Uralov, A.A. Kochanov, S.V. Lesovoi, I.I. Myshyakov, V.I. Kiselev, D.A. Zhdanov, A.T. Altyntsev, M.V. Globa
Projects: None

Publication Status: Accepted in Solar Physics
Last Modified: 2020-09-23 13:11
Go to main E-Print page  Propagation Effects in Quiet Sun Observations at Meter Wavelengths  Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker   Solar Probe  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Solar Memory From Hours to Decades
Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves
Radio evidence for a shock wave reflected by a coronal hole
Hemispheric sunspot numbers 1874 - 2020
Temperature in Solar Sources of 3He-rich Solar Energetic Particles and Relation to Ion Abundances
The long period of 3He-rich solar energetic particles measured by Solar Orbiter 2020 November 1723
Tracing Hα Fibrils through Bayesian Deep Learning
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Forecasting the Remaining Duration of an Ongoing Solar Flare
A fundamental mechanism of solar eruption initiation
Thermal Trigger for Solar Flares III: Effect of the Oblique Layer Fragmentation
Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops
Characteristic time of stellar flares on Sun-like stars
M-dwarf's Chromosphere, Corona and Wind Connection via the Nonlinear Alfvén Wave
Bayesian evidence for a nonlinear damping model for coronal loop oscillations
Small-scale Turbulent Motion of the Plasma in a Solar Filament as the Precursor of Eruption
Validation of the PDFI_SS method for electric field inversions using a magnetic flux emergence simulation
Investigation on the Spatiotemporal Structures of Supra-Arcade Spikes
Magnetic helicity and energy budget around large confined and eruptive solar flares
One dimensional prominence threads: I. Equilibrium models

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University