E-Print Archive

There are 4354 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data View all abstracts by submitter

Soshi Okamoto   Submitted: 2020-11-09 20:25

We report the latest statistical analyses of superflares on solar-type (G-type main-sequence; effective temperature is 5100 - 6000 K) stars using all of the Kepler primary mission data, and Gaia-DR2 (Data Release 2) catalog. We updated the flare detection method from our previous studies by using high-pass filter to remove rotational variations caused by starspots. We also examined the sample biases on the frequency of superflares, taking into account gyrochronology and flare detection completeness. The sample size of solar-type stars and Sun-like stars (effective temperature is 5600 - 6000 K and rotation period is over 20 days in solar-type stars) are ∼4 and ∼12 times, respectively, compared with Notsu et al. (2019, ApJ, 876, 58). As a result, we found 2341 superflares on 265 solar-type stars, and 26 superflares on 15 Sun-like stars: the former increased from 527 to 2341 and the latter from 3 to 26 events compared with our previous study. This enabled us to have a more well-established view on the statistical properties of superflares. The observed upper limit of the flare energy decreases as the rotation period increases in solar-type stars. The frequency of superflares decreases as the stellar rotation period increases. The maximum energy we found on Sun-like stars is 41034 erg. Our analysis of Sun-like stars suggest that the Sun can cause superflares with energies of ∼71033 erg (∼X700-class flares) and ∼11034 erg (∼X1000-class flares) once every ∼3,000 years and ∼6,000 years, respectively.

Authors: Soshi Okamoto, Yuta Notsu, Hiroyuki Maehara, Kosuke Namekata, Satoshi Honda, Kai Ikuta, Daisaku Nogami, Kazunari Shibata

Publication Status: Accepted for publication in ApJ
Last Modified: 2020-11-16 16:41
Go to main E-Print page  Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.  Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University