E-Print Archive

There are 4354 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
ALMA and IRIS Observations of the Solar Chromosphere II: Structure and Dynamics of Chromospheric Plage View all abstracts by submitter

Georgios Chintzoglou   Submitted: 2020-12-13 19:27

We propose and employ a novel empirical method for determining chromospheric plage regions, which seems to better isolate plage from its surrounding regions compared to other methods commonly used. We caution that isolating plage from its immediate surroundings must be done with care in order to successfully mitigate statistical biases that, for instance, can impact quantitative comparisons between different chromospheric observables. Using this methodology, our analysis suggests that 1.25 mm wavelength free-free emission in plage regions observed with ALMA/Band6 may not form in the low chromosphere as previously thought, but rather in the upper chromospheric parts of dynamic plage features (such as spicules and other bright structures), i.e., near geometric heights of transition region temperatures. We investigate the high degree of similarity between chromospheric plage features observed in ALMA/Band6 (at 1.25 mm wavelength) and IRIS/Si IV at 1393Ĺ. We also show that IRIS/Mg II h and k is not as well correlated with ALMA/Band6 as was previously thought, and we discuss the discrepancies with previous works. Lastly, we report indications for chromospheric heating due to propagating shocks supported by the ALMA/Band6 observations.

Authors: Georgios Chintzoglou, Bart De Pontieu, Juan Martínez-Sykora, Viggo Hansteen, Jaime de la Cruz Rodríguez, Mikolaj Szydlarski, Shahin Jafarzadeh, Sven Wedemeyer, Timothy S. Bastian and Alberto Sainz Dalda
Projects: ALMA,IRIS,SDO-AIA,SDO-HMI

Publication Status: ApJ (in press)
Last Modified: 2020-12-15 21:09
Go to main E-Print page  Signatures of Cross-sectional Width Modulation in Solar Spicules due to Field-aligned Flows  ALMA and IRIS Observations of the Solar Chromosphere I: an On-Disk Type II Spicule  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830Ĺ Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University