E-Print Archive

There are 4352 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Spectroscopic observations of a flare-related coronal jet View all abstracts by submitter

Qingmin Zhang   Submitted: 2021-01-19 06:03

Coronal jets are ubiquitous in active regions (ARs) and coronal holes. In this paper, we study a coronal jet related to a C3.4 circular-ribbon flare in active region 12434 on 2015 October 16. Two minifilaments were located under a 3D fan-spine structure before flare. The flare was generated by the eruption of one filament. The kinetic evolution of the jet was divided into two phases: a slow rise phase at a speed of ~131 km s-1 and a fast rise phase at a speed of ~363 km s-1 in the plane-of-sky. The slow rise phase may correspond to the impulsive reconnection at the breakout current sheet. The fast rise phase may correspond to magnetic reconnection at the flare current sheet. The transition between the two phases occurred at ~09:00:40 UT. The blueshifted Doppler velocities of the jet in the Si IV 1402.80 Å line range from -34 to -120 km s-1. The accelerated high-energy electrons are composed of three groups. Those propagating upward along open field generate type III radio bursts, while those propagating downward produce HXR emissions and drive chromospheric condensation observed in the Si IV line. The electrons trapped in the rising filament generate a microwave burst lasting for ≤40 s. Bidirectional outflows at the base of jet are manifested by significant line broadenings of the Si IV line. The blueshifted Doppler velocities of outflows range from -13 to -101 km s-1. The redshifted Doppler velocities of outflows range from ~17 to ~170 km s-1. Our multiwavelength observations of the flare-related jet are in favor of the breakout jet model and are important for understanding the acceleration and transport of nonthermal electrons.

Authors: Q. M. Zhang, Z. H. Huang, Y. J. Hou, D. Li, Z. J. Ning, and Z. Wu
Projects: IRIS

Publication Status: Accepted for publication in A&A
Last Modified: 2021-01-19 17:01
Go to main E-Print page  A Three-Dimensional Velocity of an Erupting Prominence Prior to a Coronal Mass Ejection  Catalog of Solar Failed Eruptions and Other Dynamic Features Registered by SDO/AIA  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Energy budget of plasma motions, heating, and electron acceleration in a three-loop solar flare
Space weather: the solar perspective - an update to Schwenn (2006)
Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance
The morphology of average solar flare time profiles from observations of the Sun's lower atmosphere
Indications of stellar coronal mass ejections through coronal dimmings
Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona
Solar large-scale magnetic field and cycle patterns in solar dynamo
Three-dimensional magnetic reconnection in astrophysical plasmas
Energy partition in a confined flare with an extreme-ultraviolet late phase
Alfvén wave heating in partially ionized thin threads of solar prominences
He I 10830 Dimming During Solar Flares, I: The Crucial Role of Non-Thermal Collisional Ionisations
Separating aa-index into Solar and Hale Cycle Related Components Using Principal Component Analysis
Inward Propagating Plasma Parcels in the Solar Corona: Models with Aerodynamic Drag, Ablation, and Snowplow Accretion
Energetics and 3-D Structure of Elementary Events in Solar Coronal Heating
Stellar Superflares Observed Simultaneously with Kepler and XMM-Newton
Medium-term predictions of F10.7 and F30 cm solar radio flux with the adaptive Kalman filter
Resonances in a Coronal Loop Driven by Torsional Alfvén Waves Propagating from the Photosphere
Effects of external flow on resonant absorption of coronal loop kink oscillations driven by an external fast wave: Selective excitation problem
Emerging Dimming as Coronal Heating Episodes
Proxy-Based Prediction of Solar Extreme Ultraviolet Emission using Deep Learning

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University